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Energy imbalance and temperature change
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Top of Atmosphere Radiative response to
greenhouse and shortwave forcing

A canonical response to instantaneous greenhouse forcing B canonical response to instantaneous solar forcing

° ® LW forcing
/ OLR
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How to reconcile this — response to greenhouse
forcing with a shortwave feedback

LW feedback only

Greenhouse forcing

F =4 Wm3
W N AT
\
I / =4 W m™
|
AOLR
=0 T=2K
Forcing = response
Fow = M

if Ay =-2Wm 2K
FLw /'}\sz




Time evolution of OLR response to
greenhouse forcing with SW feedback

Cannonical response to greenhouse forcing OLR mUSt gO fFOm _F LW
at time 0 to FLW in the
equilibrium response

- OLR returns to
unperturbed value

when half of the
equilibrium
temperature
change occurs
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The energy imbalance equation:

T
Has the solution: >

With the characteristic timescale (1)
T= = = 30 years (for 150 meter deep ocean)



Inter-model spread in TOA response
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Histogram of TCroSS in 4XCO2
The TOA response to greenhouse
forcing differs a lot between GCMs
* OLR returns to unperturbed values
(Tcross) Within 5 years for some GCMs
and not at all for others (bi-modal)
* On average, T ross = 19 years
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Linear Feedback model

C f.._l‘-_J'__E—?F I's = Fsw + Frw + (Apw + Asw ) Ts(t).

C = heat capacity of climate system. Time dependent — meters of ocean
T = Global mean surface temperature change

F., and F,, are the SW and LW radiative forcing (including fast cloud
response to radiative forcing — W m-?)

A, and A, are the LW and SW feedback parameters. W m=2 K

Given above parameters and T, we can predict the TOA response

OLR(t) = —FLw — ALwTs(t)

--15]?(1‘) = Fow + )\snTs(f) .




Backing out Forcing and feedbacks
from instantaneous 4XCO2 increase runs

Climate model with FAST OLR recovery (GFDL CM3) Climate model with SLOW OLR recovery (GFDL ESM2M

—~~
N

ASR change M: £ 6
slope = 1, M&&f’%ﬁ% M <
___0-0'6" —8°‘ ° Sﬁ

PP o
& *° OLR change:

(o]

n
N

ASR change
slope =2,

A DD O NN B~ O
A DD O D

»
»

£
s
=
e,
kS
©
s
<
O_
I_
%
£-
()
o)
=
®©
=
O

Change ins TOA radiatio

3 4 5
Change in surface temperature (K) Change in surface temperature (K)

5

* Feedbacks parameters (A, and A, ) are the slope of —OLR and ASR
vs. To (W m=2 K1)

* Forcing (F,, and F) is the intercept (W m=) . Includes rapid cloud
response to CO, (Gregory and Webb)



Linear Feedback model works
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The TOA response in each model (and
ensemble average) — solid lines—is well

All parameters vary between GCMs

: : 200}
replicated by the linear feedback model =
150r e
* What parameters (forcing, feedbacks, Fl T Correlation = |
. . . 0.998
heat capacity) set the mean radiative 0 . . .
] o 0 50 100 150 200
response and its variations across Gl Tiinear FesdhackcMadel (Feats)
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Ensemble average
forcing and feedbacks

Ensemble average OLR recovery timescale

CMIP5 Ensemble mean response instantaneous 4XCO,

Ay = -1.7 W m2K-2
Aqy = +0.6 W m2 K-

_ 2
Fiw=t61Wm , 7 OLR Linear Feedback Model

, 7 ASR Linear Feedback Model
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equilibrium temperature change

Tea
ASR in new equilibrium = T,y A, =4 W m™

* To come to equilibrium, OLR must go from - F,, =- 6.1 W m™
to Teg Ay = +4 W m™
* OLR must change by 10 W m2to come to equilibrium
— OLR crosses zero about 60% of the way the equilibrium



Climate model differences in OLR response time

Climate model with FAST OLR recovery (GFDL CM3) Climate model with SLOW OLR recovery (GFDL ESM2M
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Time series of TOA Radiation change in 4XCO, Runs
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Sensitivity of Ty to feedback parameters

If F,, = O (simplification): Dependence of T___on SW and

cross

LW feedback parameters
Unstable

Teross = TINCA L / A sw)

2.0
Ay (W m2K)

T___(years)

10 20 30 40 50 >50




Cause of SW positive feedbacks:

absorbed




Radiative feedback parameters calculated from CERES EBAF and GISStemp
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Implications for OLR recovery timescale

Dependence of 1 on SW and
e QObservational constraints LW feedback parameters

suggest that t___.is of order

Cross

decades IN RESPONSE TO

LW FORCING ONLY : . b
O
) Observ!:ational - :
e Assumes an (CMIP5 Eetimates £10 4D

ensemble average) radiative
relaxation timescale (t) of
27 years

T =tIn(-Ayw/Acw) -3. - -2.0
CROSS tw /N sw 2
Ay, (Wm?2K)

T__(years)
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Comparison of climate senstivity calculated from

Ca n We get interannual variability and CO, forcing in climate models
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Radiation causes
surface
temperature
anomalies as well
as responds to it—
potential to
confuse the non-
feedback forcing
with the
feedback.

Climate Feedback Parameter (A-- W m?)
Regression coeefieicnet between TOA and T,

Lagged regression between global mean T_ and TOA
radiation in unforced ACCESS 1.0 climate model

ASR (Shortwave)
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Conclusions

CO2 initiates global warming by decreasing OLR
but the TOA energy imbalance is dominated by
increased absorbed solar radiation in most
climate models — associated with surface albedo
and SW water vapor feedbacks

CERES data also suggest a positive shortwave
feedback = global warming will most likely
result in enhanced ASR and we should not

< 0,» : A{%
. No OLR crossover
expect to see reduced OLR from the forcing _

T___(years)

Comparison of climate senstivity calculated from
interannual variability and CO, forcing in climate models

0 10 20 30 40 50 >50

Can interannual variability in CERES tell us
anything about climate feedbacks?
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Ocean Heat Content
- NCEP TS

(W m=2 year)
Surface Temperature Anomaly

NCEP, GISTEMP and HADCRUT(K)
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Are the radiative feedbacks that operate on
inter-annual timescales equivalent to
equilibrium feedbacks?

Comparison of inter-annual vs. externally forced climate feedbacks
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2XCO, Change in SW Absorption
Profile in GFDL 2.1

Radiation Transmltted by the Atmosphere
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Heat capacity: 4XCO,

Surface Temperature Change TOA Energy Accumulation Heat Capacity of Climate System
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ATS at year 150

» Heat capacity increases with time as energy penetrates into
the ocean

* In first couple decades, energy is within the first couple 100 m
of ocean and system e-folds to radiative equilibrium in about a
decade
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equilibrium?

Ensemble average

forcing and feedbacks
« C=250m (30 W m2year K-
the ensemble average for fj
century after forcing
« Ay =-1.7Wm32K"
« Agy = +t0.6 W m2K-

Heat capacity -- C
(Effective ocean depth -- m)

The energy imbalance equatio

Years since CO, Quadrupling

Has the solution:
TS

With the characteristic timescale (1)
T: —

= 27 years



All parameters vary between GCMs Wh at pa ra m ete r' CO ntro | S i n te r
GCM spread in TOA
Correlation = re S po n Se ?

0.998 + Using all GCM specific parameters
50 100 150 200 gets the inter-model spread in 1

T, in Linear Feedback Model (Years) Cross

T (Years)

Cross

B S
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Agand Fg, vary between GCMs
« Varying just Agyyand Fg,, between
GCMS captures inter-model spread

in TCI’OSS
Correlation = * ANw, FLw and heat capacity
0.98 differences between GCMs less
50 100 150 200 important for determining the

T, in Linear Feedback Model (Years) rad |at|Ve res ponse

Ay, varies between GCMs

« Varying just Ag,, gives bi-modal
distribution of 1., With exception of
two models (Fg, plays a role here)

Correlation =
0.78

100 150 200
7. In Linear Feedback Model (Years)




dependence on feedback parameters

Ensemble average forcing and feedbacks
« Ay =-1.7 Wm2K-
¢+ Agy = +0.6 W m2K-
¢ Fy=+61Wm?

CFOSS

CMIP5 Ensemble mean response instantaneous 4XCO,

equilibrium temperature change
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Feedback gain: Amplification of response due to
GFEED

T SW (red) and LW (green) feedback parameters in CMIP5 GCMs
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UV Idol UUCO LIIC SySLEHI 'dppl'U'dUll
equilibrium?

Ensemble average

forcing and feedbacks
« C=250m (30 W m2year K-
the ensemble average for fj
century after forcing
« Ay =-1.7Wm32K"
« Agy = +t0.6 W m2K-

Heat capacity -- C
(Effective ocean depth -- m)

The energy imbalance equatio

Years since CO, Quadrupling

Has the solution:
TS

With the characteristic timescale (1)
T: —

= 27 years



All parameters vary between GCMs Wh at pa ra m ete r' CO ntro | S i n te r
GCM spread in TOA
Correlation = re S po n Se ?

0.998 + Using all GCM specific parameters
50 100 150 200 gets the inter-model spread in 1

T, in Linear Feedback Model (Years) Cross

T (Years)

Cross
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Agand Fg, vary between GCMs
« Varying just Agyyand Fg,, between
GCMS captures inter-model spread

in TCI’OSS
Correlation = * ANw, FLw and heat capacity
0.98 differences between GCMs less
50 100 150 200 important for determining the

T, in Linear Feedback Model (Years) rad |at|Ve res ponse

Ay, varies between GCMs

« Varying just Ag,, gives bi-modal
distribution of 1., With exception of
two models (Fg, plays a role here)

Correlation =
0.78

100 150 200
7. In Linear Feedback Model (Years)




dependence on feedback parameters

Ensemble average forcing and feedbacks
« Ay =-1.7 Wm2K-
¢+ Agy = +0.6 W m2K-
¢ Fy=+61Wm?

CFOSS

CMIP5 Ensemble mean response instantaneous 4XCO,

equilibrium temperature change
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Feedback gain: Amplification of response due to
GFEED

T SW (red) and LW (green) feedback parameters in CMIP5 GCMs
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Sensitivity of T-r5s5 10 feedback parameters

If FSW = 0 (simplification): Dependence of T____on SW and

cross

LW feedback parameters
Unstable

OSS

No OLR Crossover.

2.0
Ay (W m2K)

T___(years)

0O 10 20 30 40 50 >50




" \Vhat parameter controls inter-
GCM spread in TOA

Correlation = reS ponse .
0.998
50 100 150 200 . - : :
T, in Linear Feedback Model (Years) Whlle the relatlve magnltUdeS Of )\SW
T (Years) and A,y exp_laln the vast majority of
[ esesssem——— the spread in 1, there are several
s model outliers

Agand Fg, vary between GCMs

« A more complete analysis includes
inter-model differences in Fg,

Correlation = - Fgw includes both direct
radiative forcing by CO2 (small)
50 100 150 200 .
T, in Linear Feedback Model (Years) and the I’apld response Of CIOUdS

to the forcing

Ay, varies between GCMs

Correlation =
0.78

100 150 200
7. In Linear Feedback Model (Years)




From before, if Fg,, =0 then:

GFEED

Feedback Gain =

response to greenhouse forcing
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If [Agwl = ¥4 [Auyl = Teq is doubled

The OLR change to get to equilibrium
(2*Fow/ [Aowl) ™ 1A wl = 2F

- OLR = 0 occurs half way to equilibr

liS:
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2 Tcross = T IN(2)

If F5 # O then:

GFORCE
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If FLw = Fsw 2 Tgq is doubled
and OLR asymptotes to +F,

- OLR = 0 occurs half way to
equilibrium
2 Tcross = TIn(2)
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4XCO,

Feedbacks

SW (red) and LW (green) feedback parameters in CMIP5 GCMs
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Forcing

SW (red) and LW (green) forcing in CMIPS GCMs
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« LW feedback is negative
(stabilizing) and has small inter-
GCM spread

« SW feedback is mostly positive
and has large inter-GCM spread

« Forcing is mostly in LW
(greenhouse)

« SW forcing has a significant .
inter_GCM Spread Instantaneous Forcing (W m'2)

N

2

Frequency (number of GCMs)
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Sensitivity of T-r5s5 10 feedback parameters

Dependence of T____on SW
Forcing and Feedback Gain

» Positive SW forcing and
feedbacks favor a short OLR
recovery timescale with a
symetric dependence on the
“gain” factors

» Explains the majority (R= 0.88)
of inter- model spread

* Assumes a time and model
invariant heat capacity (250m
ocean depth equivalent)

10 20 30 40 50 >50




LW Feedback parameter from
observations

« Surface temperature explains a
small fraction of OLR’ variance
(R=0.52)

« Error bars on regression
coefficient (10) are small, why?

 Weak 1 month auto-correlation
in OLR" —rg g (1month) = 0.3 -
lots of DOF (N*= 113)
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Global mean temperature anomaly (K)

Even if none of the OLR’ variance was explained, the regression slope
is still significant

- Given the number of realizations, you would seldom realize such a
large regression coefficient in a random sample — in the absence of a
genuine relationship between Tg and OLR



SW Feedback parameter from
observations

Very weak correlation (r=0.16)

Almost no memory in ASR’ —
ro,r (1mMonth) = 0.1 — mean we
have lots of DOF (N*= 143)

Aow= +0.8+0.4 W m?K"
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Forcing adjuste

The significance of the regression slope is not a consequence of the
variance explained but, rather, the non-zero of the slope despite the
number of realizations

- The feedback has emerged from the non-feedback radiative
processes in the record



